
Can MPI Be Used for Persistent
Parallel Services?

Robert Latham, Robert Ross, and Rajeev Thakur

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60649, USA
{robl,rross,thakur}@mcs.anl.gov

Abstract. MPI is routinely used for writing parallel applications, but
it is not commonly used for writing long-running parallel services, such
as parallel file systems or job schedulers. Nonetheless, MPI does have
many features that are potentially useful for writing such software. In
this paper, we use the PVFS2 parallel file system as a motivating example
to study the needs of software that provide persistent parallel services
and evaluate whether MPI is a good match for those needs. We also
ran experiments to determine the gaps between what the MPI Standard
enables and what MPI implementations currently support. The results of
our study indicate that MPI can enable persistent parallel systems to be
developed with less effort and also provide high performance, but MPI
implementations will need to provide better support for certain features.
We also describe an area where additions to the MPI Standard would be
useful.

1 Introduction

Achieving good performance on today’s high-end computing machines involves
effectively utilizing a variety of network interconnects, a large number of com-
pute resources, and quality algorithms. Application developers make heavy use
of libraries and tools to manage this complexity while still delivering high perfor-
mance. Parallel application writers commonly choose the message-passing model,
embodied by the MPI Standard [10], for their work. The MPI Standard defines
a rich API that can be used across many disparate hardware platforms and pro-
vides many useful features such as datatype packing, collective communication,
nonblocking communication, and dynamic process management, while quality
MPI implementations provide heterogeneous communication and deliver high
performance.

Parallel system services, on the other hand, are usually not written in MPI.
One would imagine, however, that MPI’s portability, performance, and features
should make it an attractive candidate for implementing parallel system services
as well. If so, why don’t these software use MPI? Could they? We investigate
these issues in detail in this paper. For concreteness, we use the parallel file
system PVFS2 [1] as an example for studying the needs of such software. We

1



have been heavily involved in the development of PVFS2 and are very familiar
with its requirements. PVFS2 and its predecessor, PVFS [3], represent a decade
of parallel file system research and engineering. PVFS2 was written to deliver
high performance at scales of hundreds of servers and tens of thousands of clients
and has done so on some of the worlds fastest and largest supercomputers, such
as IBM BG/L, Cray XT-3, and large Linux clusters.

We first give a brief overview of PVFS2 and its architecture. Then, using
PVFS2 as an example, we study the needs of software for persistent parallel
services and examine how well MPI is equipped to meet those needs. We find in
most cases that the MPI Standard supports the features we need, but some of
them are not commonly supported in all MPI implementations. We also describe
an area where we would benefit from additions to the MPI Standard.

2 PVFS2: A Persistent Parallel Service

A Persistent Parallel Service (PPS) is system software that manages multiple
hardware components to provide a single logical resource for use by parallel
applications. It is persistent in the sense that it exists beyond the life of a single
application. A parallel file system is an example of a persistent parallel service.

PVFS2 [1] is a high-performance

Fig. 1. PVFS2 architecture. pvfs2-client
forwards kernel-level requests to
pvfs2-server processes running on the
servers. pvfs2-server, in turn, deals with
managing data on storage devices.

parallel file system being devel-
oped as a joint project between
Argonne National Laboratory, Clem-
son University, and the Ohio Su-
percomputer Center. PVFS2 com-
prises multiple servers, which are
persistent. A PVFS2 file is striped
across these servers. PVFS2 soft-
ware on the client side hides all
these details from the client and
instead presents a single logi-
cal view of a file. File striping
across multiple servers enables
multiple clients to access differ-
ent parts of a file in parallel, re-
sulting in high performance.

PVFS2 provides many fea-
tures such as native support for
several popular networking tech-

nologies like Myrinet, InfiniBand, and TCP/IP, multiple APIs (POSIX, MPI-
IO), user-controlled striping of files across nodes, a well defined interface for
defining new data distribution schemes, support for heterogeneous clusters, and
distributed metadata. It uses commodity network and storage hardware and is
easy to install (no kernel patch). The familiar UNIX file tools (such as ls, cp,
and rm) can be used on PVFS2 files and directories.

2



In the following sections, we use PVFS2 as an example to study the common
needs of persistent parallel services and then investigate how well MPI supports
those features.

3 Service Identification

Any persistent service needs to handle the impor-
T_0

T_1

T_2

config file

Servers

Client

Fig. 2. Client estab-
lishing connections
to PVFS2 servers,
current method.
The client has to
look at a config-
uration file and
connect to one of the
PVFS2 servers be-
fore it knows where
the other PVFS2
servers are.

tant issue of locating the servers. For traditional net-
work services, the IP address and port number are often
listed in a configuration file. PVFS2 follows a similar ap-
proach. PVFS2 has two types of configuration files: for
the servers and for the clients. The configuration files
for PVFS2 servers list all the servers that form the par-
allel file system. Each server reads this list at startup.
A PVFS2 client uses its own configuration file to locate
PVFS2 servers (see Figure 2). This file resembles a Unix
/etc/fstab file and provides the network address of any
one of the PVFS2 servers, a mount point on the client
system, and a few other parameters. The client enquires
with the listed server about the file system, obtains a
complete listing of all the servers, and then begins inter-
acting with the file system.

If PVFS2 used MPI, it could use MPI’s features that
enable service identification. The MPI name publishing
interface (MPI Publish name, MPI Lookup name) provides
a method for clients and servers to exchange information.
Clients could use a well-known key to discover an initial
contact point. This well-known key would provide service
discovery that is independent of the underlying network
interconnect or even MPI implementation. Clients would
be insulated from server changes, be it a different port,
host, or even interconnect, without system administra-
tors needing to update client-side configuration files.

In practice, however, MPI implementations currently do not support this
functionality as well as needed. For this functionality to be usable, MPI imple-
mentations must support name publishing and resolution across independently
started MPI processes because PVFS2 servers are not restarted with every new
client application. We ran some tests with several commonly deployed MPI im-
plementations and found that they do not support this mode of operation (as
summarized in Table 1). These MPI implementations do let us exchange infor-
mation between independent processes via the name-publishing interface, but
with certain restrictions. For example, the processes must be part of the same
MPD ring in MPICH2 [11], and some other restrictions with the orted daemons
in Open MPI [12]. This additional component (MPD or orted) must also be
persistent and able to tolerate node failure.

3



Table 1. Capabilities of MPI implementations. An ideal implementation would have a
Y in all rows.

Implementation
MPICH2 Open MPI BGL-MPI

Feature 1.0.3 1.0.1 V1R2M1
Published name appears to other singleton processes N N N
Connect/Accept work under singleton MPI Init Y* N N
MPI Comm join works under singleton MPI Init Y* N N
Requires a previously established MPI environment
(lamboot, MPD, others)

N* Y Y

MPI Comm spawn works under singleton MPI Init ? ? ?
MPI datatype processing supports heterogeneous ar-
chitectures

N N ?

Support for external32 N N N

4 Establishing Connection

After clients have discovered what services are running, they need to connect
to those services. The traditional Unix socket model has the familiar TCP
accept/connect handshake. Other protocols have analogous mechanisms. PVFS2
uses an abstraction that is layered on top of the connection mechanisms of mul-
tiple networks, providing portability.

The use of MPI could simplify this process greatly. MPI’s dynamic process
functionality supports two different ways for clients to establish communica-
tion with servers. One approach has the server process call MPI Comm accept,
waiting for a corresponding client-side call to MPI Comm connect. MPI Comm join
provides another approach for two processes that already share a UNIX network
socket to establish MPI communication. In both cases, the functions returns an
MPI intercommunicator, over which the clients and servers can communicate.
Furthermore, the accept/connect functions in MPI are collective. A group of
clients can connect to a group of servers at the same time, and the resulting
intercommunicator can be used for communication between any client and any
server.

These MPI functions are much easier to use than the corresponding Unix
socket ones. In addition, they are portable. The MPI implementation takes care
of implementing the connection mechanism over the underlying network proto-
col, freeing the system software developer from the effort.

Client connections done with MPI do come with a few challenges. The accep-
t/connect approach needs the name of an open MPI port. If the name-publishing
interface in an MPI implementation works across independently launched MPI
programs (as described in Section 3), MPI Publish name and MPI Lookup name
can greatly simplify the process of obtaining the MPI port name. Otherwise, un-
wieldy implementation-specific strings would have to be passed around by hand.
MPI Comm join does not have a dependency on the name-publishing interface.

4



It does, however, require a UNIX network socket to be already set up between
the client and server. The socket is used only for the initial handshake; all other
communication goes over the native transport used by the MPI implementation.

5 Fast Data Transfer

A persistent parallel service needs fast data transfer between clients and servers.
PVFS2 has a few specific needs in this area.

– It needs fast communication of data between clients and servers over a num-
ber of different networking technologies, using the fastest protocol for each
network, for example TCP over Ethernet, GM or MX over Myrinet, the
native InfiniBand protocol over InfiniBand.

– For control messages between client and server (not for data), it needs sup-
port for heterogeneity, because clients and servers could run on different ar-
chitectures. For example, Argonne’s IBM BG/L system has a mix of PPC64,
PPC32, and IA32 nodes.

– It needs support for communicating noncontiguous data efficiently.
– It needs support for nonblocking communication.

A substantial amount of code has been written in PVFS2 to support these needs.
PVFS2 uses an abstraction called the Buffered Message Interface (BMI) [4] for
portable high-performance communication over multiple networks. For control
messages, PVFS2 defines an encoding scheme that converts all commands to
a fixed-length, little-endian format, which allows PVFS2 clients and servers to
have any mix of byte endianess or word size. (Defining this encoding correctly
took many iterations.) PVFS2 implements its own way of communicating non-
contiguous data, which required several thousand lines of code.

MPI is a perfect fit for all these requirements. MPI provides a portable inter-
face for communication, and MPI implementations do the job of implementing
that interface efficiently on the underlying network. The MPI Standard sup-
ports heterogeneous communication through the use of MPI datatypes. MPI
implementations, however, vary in their support for heterogeneity. For exam-
ple, MPICH-1 does support heterogeneity, whereas MPICH-2 and Open MPI at
present do not. The MPI Standard does have some limitations in that there is no
universal way to express certain sized types, such as 64-bit integers, and PVFS2
file handles are 64-bit values. Nonetheless, we could use MPI LONG LONG, which
is often 64 bit, or if not, use two MPI INT types. MPI also supports communi-
cation of noncontiguous data through derived datatypes. MPI implementations,
however, have historically not performed well on derived datatypes. Nonethe-
less, various research efforts have demonstrated that derived datatypes can be
implemented in a way that delivers good performance [13, 15]. We hope MPI
implementations will devote effort to optimizing derived datatypes. MPI also
supports nonblocking communication, which allows us to overlap communica-
tion with disk I/O.

These features of MPI make it ideally suited for use in data communication,
although better support is needed from implementations.

5



6 Fault Tolerance

Any persistent parallel software needs to be resilient against faults as far as
possible. The robustness depends on how well the software itself is designed and
implemented also also on the robustness of the external components that the
software uses.

In a cluster environment, each PVFS2 server represents a potential point of
failure, and error recovery becomes an important consideration. To that end,
PVFS2 servers operate in a stateless manner: there are no locks to revoke or
leases to offer, and client tracking is not necessary. This stateless nature makes
recovering from server failure much easier. PVFS2 can retry operations in order
to hide transient problems. If a server failure occurs, PVFS2 operations will time
out and return an error to the caller. If a server has been restarted (either by
hand or perhaps by a failover script) the newly restarted server will be able to
service the client request.

If PVFS2 were implemented using MPI, it would require the MPI imple-
mentation to be resilient against failure. The MPI Standard itself does not say
much about fault tolerance; it is left as a quality of the implementation. But
MPI does have some features that can help in writing resilient programs. For
example, MPI has a very well-defined mechanism of error returns from functions,
and users can specify their own error handlers. The default error handler is that
the entire job aborts on error, but users can change that to “errors return” or
define their own error handler. MPI also has the notion of intercommunicators
for two groups of processes (for example, clients and servers) to communicate.
When two independently started processes connect to each other and communi-
cate over the intercommunicator, the failure of one process need not cause the
other process to die.

Most MPI implementations, however, are not robust against errors. For ex-
ample, if the connection between two processes is lost, the entire MPI job may
abort; or if a single process is killed, the entire MPI job may get killed. This
kind of failure will not be good for a parallel file system that uses MPI. Al-
though there are some efforts at building fault-tolerant MPI implementations [2,
7], more work is needed in this area.

Another area where MPI can help is in the parity calculation for a software-
RAID like approach in providing fault-tolerance for data stored on the parallel
file system. Gropp et al. proposed a lazy redundancy scheme in [8] which makes
use of both MPI-IO consistency semantics and the MPI collective functions
MPI Reduce scatter and MPI Reduce. Implementing this scheme becomes much
easier when PVFS2 servers are based on MPI.

The processes providing the parallel service can only communicate with each
other once they have established an MPI communicator. On one extreme we
could establish many two-process communicators. Having all these communica-
tors makes the system resilient to failure, but greatly complicates any all-to-all or
one-to-many messaging algorithms. At the other extreme we could establish an
all-encompassing communicator spanning all processes. In exchange for simpli-
fied communication, such a system would be more fragile. We would need some

6



way to re-form this communicator when one of the member processes died, while
still maintaining the properties of MPI communicators (context, fixed identifiers)
that make them so useful.

7 Collective and Aggregate Operations

In PVFS2, many operations re-

Fig. 3. An aggregate operation lets a sin-
gle create request initiate 1: creation of
the metadata entry 2: datafile entries on
each server. The servers could potentially
be better connected to each other than
clients (as in a WAN), yielding fewer
messages, better performance and lower
latency

quire multiple steps performed across
many servers. Creating a new file re-
quires a single metadata entry and
a data file entry on each server. Re-
moving a file requires removal of the
data file from each server followed
by removal of the corresponding meta-
data entry. A stat system call needs
to collect partial file size informa-
tion from each server before return-
ing the total size of a file. While the
client code makes just one function
call for these operations, the under-
lying library carries out a one-to-
many operation. The client library
posts these messages as nonblock-
ing sends to the servers and waits
for their response.

An alternate approach would have clients send a single “create file” message
to one of the servers and have server then orchestrate actions on the client’s
behalf, as described in [5]. This approach simplifies the synchronization of oper-
ations and leads to the natural use of structured communication patterns such
as broadcasting an operation request using a tree-based algorithm as shown in
Figure 4(b).

Aggregate operations also make deployment over the wide-area more efficient.
We can easily imagine a topology where the servers are located very near to each
other while the clients may be quite far away, network-wise. These aggregate
messages mean fewer network round trips and lower latency. The servers can
exchange messages with each other over their local network and send a single
response over the long-haul, high-latency link.

MPI is well known for its collective operations, such as broadcast, allre-
duce, and scatter/gather. Many implementations have optimized collective op-
erations [14]. The collective communication operations in MPI are defined to
be collective over a communicator; all processes in the communicator must call
them. In an application, this requirement is easy to meet. In PVFS2, however, the
servers do not know which client will issue the collective operation; for example,
which client will want to delete a file. PVFS2 needs to be able to respond to un-
predictable client requests. Therefore, the servers must either post nonblocking

7



(a) Independent file removal, 8
timesteps

(b) Collective file removal. 3
timesteps

Fig. 4. File removal requires deletion of the data file on each server. The independent
approach has very little room for optimization, requires careful coordination to keep
metadata consistent, and O(N) timesteps to complete. The collective approach simpli-
fies metadata updates and requires only O(log(N)) timesteps.

collective calls or a broadcast with a “wildcard” root that will be specified later.
This functionality, however, doesn’t exist in MPI; MPI collectives are blocking
calls. There was a proposal for nonblocking collectives in the MPI-2 Forum, but
it was not accepted. Some implementations have extensions that support this
feature, for example, in IBM’s MPI [9] (although it has been deprecated).

We are investigating the issue of how nonblocking (or wildcard) collectives
could be supported as an extension to MPI and what their semantics would be.
We plan to develop a prototype implementation.
8 Conclusions

Writing parallel system software can be a significant undertaking. A production
parallel file system such as GPFS, GFS, Lustre, or PVFS2 takes many years to
develop and stabilize. Much of this effort goes into implementing many of the
features that MPI already supports, and this duplicate effort be avoided. While
there are some challenges in implementing system software using MPI today,
they are mainly due to the limitations of MPI implementations rather than
deficiencies in the MPI Standard. At the same time, the addition of nonblocking
collectives to MPI would make it even more useful for building parallel systems
software.

The requirements we have discussed apply to more than just PVFS2 or other
parallel file systems. For example, job schedulers could use MPI dynamic process
functions to launch parallel jobs (via MPI Comm spawn), and system monitoring
daemons could use MPI datatypes and support for heterogeneous communication
to monitor disparate resources. Desai et al. in [6] used MPI to implement a variety
of system-level application utilities, such as file staging, file synchronization, and
a parallel shell.

8



We note that using MPI for implementing persistent system services does
not restrict user applications to being MPI applications. The PVFS2 client can
determine whether MPI has been initialized (by calling MPI Initialized) and
then call MPI Init if it hasn’t been. Clients and servers can then communicate
using MPI. (Again, all implementations need to support this feature of MPI,
called “singleton init.”)

In summary, we would like to implement PVFS2 using MPI. We hope MPI
implementers will take up the challenge and develop high-quality implementa-
tions that can be used to develop system software such as a parallel file system!

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract W-31-
109-Eng-38.

References

1. Argonne National Lab and Clemson University. The PVFS2 parallel file system.
http://www.pvfs.org/pvfs2, last visited: April 2006.

2. George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak,
Cecile Germain, Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic
Magniette, Vincent Neri, and Anton Selikhov. MPICH-V: toward a scalable fault
tolerant mpi for volatile nodes. In Supercomputing ’02: Proceedings of the 2002
ACM/IEEE conference on Supercomputing, pages 1–18, Los Alamitos, CA, USA,
2002. IEEE Computer Society Press.

3. Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS:
A parallel file system for linux clusters. In Proceedings of the 4th Annual Linux
Showcase and Conference, pages 317–327, Atlanta, GA, October 2000. USENIX
Association.

4. Phillip Carns. Design and analysis of a network transfer layer for parallel file
systems. Masters Thesis, Clemson University, 2001.

5. Phillip H. Carns. Achieving Scalability in Parallel File Systems. PhD thesis, Dept.
of Electrical and Computer Engineering, Clemson University, Clemson, SC, May
2004.

6. Narayan Desai, Rick Bradshaw, Andrew Lusk, and Ewing Lusk. MPI cluster sys-
tem software. In Dieter Kranzlmuller, Peter Kacsuk, and Jack Dongarra, editors,
Recent Advances in Parallel Virutal Machine and Message Passing Interface, num-
ber 3241 in Springer Lecture Notes in Computer Science, pages 277–286. Springer,
2004. 11th European PVM/MPI Users’ Group Meeting.

7. Grahm Fagg and Jack Dongarra. FT-MPI: fault tolerant mpi, supporting dynamic
applications in a dynamic world. In Proceedings of the Euro PVM/MPI Users’
Group, pages 346–353, 2000.

8. William D. Gropp, Robert Ross, and Neill Miller. Providing efficient I/O re-
dundancy in MPI environments. Lecture Notes in Computer Science, 3241:77–86,
November 2004.

9



9. International Business Machines Corporation. IBM Parallel Environment for AIX
5L: MPI Subroutine Reference, third edition, April 2005.

10. Message Passing Interface Forum. MPI-2: Extensions to the message-passing in-
terface, July 1997. http://www.mpi-forum.org/docs/docs.html.

11. MPICH2. http://www.mcs.anl.gov/mpi/mpich2.
12. Open MPI: Open source high performance computing. http://www.open-mpi.org.
13. Robert Ross, Neill Miller, and William Gropp. Implementing fast and reusable

datatype processing. In Proceedings of the 10th EuroPVM/MPI Conference,
September 2003.

14. Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective
communication operations in MPICH. International Journal of High-Performance
Computing Applications, 19(1):49–66, Spring 2005.

15. Jesper Larsson Traff, Rolf Hempel, Hubert Ritzdorf, and Falk Zimmermann. Flat-
tening on the fly: Efficient handling of MPI derived datatypes. In PVM/MPI 1999,
pages 109–116, 1999.

10


